Biomedical Signal Analysis
نویسنده
چکیده
Any signal transduced from a biological or medical source could be called a biosignal. The signal source could be at the molecular level, cell level, or a systemic or organ level. A wide variety of such signals are commonly encountered in the clinic, research laboratory, and sometimes even at home. Examples include the electrocardiogram (ECG), or electrical activity from the heart; speech signals; the electroencephalogram (EEG), or electrical activity from the brain; evoked potentials (EPs, i.e., auditory, visual, somatosensory, etc.), or electrical responses of the brain to specific peripheral stimulation; the electroneurogram, or field potentials from local regions in the brain; action potential signals from individual neurons or heart cells; the electromyogram (EMG), or electrical activity from the muscle; the electroretinogram from the eye; and so on. Clinically, biomedical signals are primarily acquired for monitoring (detecting or estimating) specific pathological/physiological states for purposes of diagnosis and evaluating therapy. In some cases of basic research, they are also used for decoding and eventual modeling of specific biological systems. Furthermore, current technology allows the acquisition of multiple channels of these signals. This brings up additional signal-processing challenges to quantify physiologically meaningful interactions among these channels. Goals of signal processing in all these cases usually are noise removal, accurate quantification of signal model and its components through analysis (system identification for modeling and control purposes), feature extraction for deciding function or dysfunction, and prediction of future pathological or functional events as in prosthetic devices for heart and brain. Typical biological applications may involve the use of signal-processing algorithms for more than one of these reasons. The monitored biological signal in most cases is considered an additive combination of signal and noise. Noise can be from instrumentation (sensors, amplifiers, filters, etc.), from electromagnetic interference (EMI), or in general, any signal that is asynchronous and uncorrelated with the 18.
منابع مشابه
Quantification of Parkinson Tremor Intensity Based On EMG Signal Analysis Using Fast Orthogonal Search Algorithm
The tremor injury is one of the common symptoms of Parkinson's disease. The patients suffering from Parkinson's disease have difficulty in controlling their movements owing to tremor. The intensity of the disease can be determined through specifying the range of intensity values of involuntary tremor in Parkinson patients. The level of disease in patients is determined through an empirical rang...
متن کاملAn Android Application for Estimating Muscle Onset Latency using Surface EMG Signal
Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...
متن کاملComplex feature analysis of center of pressure signal for age-related subject classification
Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...
متن کاملAssessment of Photoplethysmography Method in Extraction of Hemoglobin Concentration
Background: The importance of continuous monitoring along with rapid and accurate notification of changes in blood components such as hemoglobin concentration, especially in acute situations, encourages researchers to use non-invasive methods for measuring.Objective: This study was aimed to investigate the correlation between hemoglobin concentration and photoplethysmogram (PPG) and the p...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005